Discussion Problems for Math 180

Tuesday, April 21, 2015

Review – take no more than five minutes per question.

1. Fill in the blank:

- (a) A function f is continuous at x = a if _____.
- (b) By definition, f'(x) =_____. (c) By definition, $\int_a^b f(x) dx =$ _____.
- (d) The fundamental theorem of calculus says that $____$.
- 2. Given that $\ln(2) \approx 0.6931$ and $\ln(12) \approx 2.4849$, we can say that $\ln(3) \approx$ _____.
- 3. Calculate $\frac{d}{dx} \left[\ln \left(\frac{x^3 5x + 1}{x^6 5x^4 + 3x 2} \right) \right]$. (Hint: think before you calculate!)

 $This \ time$

4. Calculate:

(a)
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} dx$$

(b) $\int_{0}^{1} \frac{1}{1+x^{2}} dx$
(c) $\int_{0}^{1} \frac{1}{\sqrt{1+x}} dx$
(d) $\int_{0}^{1} \frac{1}{1+x} dx$

(Parts (c)–(d) will take a little extra thought.)

5. Calculate $\int_{0}^{5\pi} |\sin(x)| dx$. (Hint: sketch the graph first.) 6. What is $\frac{d}{dx} \int_{-\pi x/2}^{\pi x/2} \ln(\cos(t)) dt$?