Discussion Problems for Math 180

Tuesday, April 21, 2015

Review - take no more than five minutes per question.

1. Fill in the blank:
(a) A function f is continuous at $x=a$ if \qquad .
(b) By definition, $f^{\prime}(x)=$ \qquad .
(c) By definition, $\int_{a}^{b} f(x) d x=$ \qquad .
(d) The fundamental theorem of calculus says that \qquad $=$ \qquad .
2. Given that $\ln (2) \approx 0.6931$ and $\ln (12) \approx 2.4849$, we can say that $\ln (3) \approx$ \qquad .
3. Calculate $\frac{d}{d x}\left[\ln \left(\frac{x^{3}-5 x+1}{x^{6}-5 x^{4}+3 x-2}\right)\right]$. (Hint: think before you calculate!)

This time
4. Calculate:
(a) $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$
(b) $\int_{0}^{1} \frac{1}{1+x^{2}} d x$
(c) $\int_{0}^{1} \frac{1}{\sqrt{1+x}} d x$
(d) $\int_{0}^{1} \frac{1}{1+x} d x$
(Parts (c)-(d) will take a little extra thought.)
5. Calculate $\int_{0}^{5 \pi}|\sin (x)| d x$. (Hint: sketch the graph first.)
6. What is $\frac{d}{d x} \int_{-\pi x / 2}^{\pi x / 2} \ln (\cos (t)) d t$?

